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One-loop corrections to the metastable vacuum decay
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We evaluate the one-loop prefactor in the false vacuum decay rate in a theory of a self-interacting scalar field
in 3+ 1 dimensions. We use a numerical method, established some time ago, which is based on a well-known
theorem on functional determinants. The proper handling of zero modes and of renormalization is discussed.
The numerical results show in particular that the quantum corrections strongly increase when one approaches
the thin-wall case. In the thin-wall limit the numerical results are found to join into those obtained by a gradient

expansion.
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[. INTRODUCTION nants. In general it is a very difficult task to calculate ana-

lytically the determinants if the background solution itself is

First-order phase transitions play an important role innot known in a closed form. It took two decades until the
various phenomena from solid state physics to cosmologyirst (numerical computations of the quantum corrections to
The basic theoretical concepts of these transitions have begésading order semiclassical transition rates appepted?].
developed long agfil—6]. The phase transition proceeds via Of course nowadays the CPU time requirements for such
formation of stable phas@r true vacuumbubbles within a  computations are, even for more involved systems, of the
metastableor false vacuumenvironment, and via the sub- orger of seconds. On the other hand the requirements of a
sequent growth of these bubbles. Two mechanisms of thgrecise renormalization, which compares exactly to the one
first order phase transitions are known: quantum tunneling¢ heryrhative quantum field theory, and of the inclusion and
and thermal activation. In both cases the decay rate of Bareful treatment of high partial waves, have of course re-
metastable state is given by the formula mained the same. The method used here has been developed
and tested for various systems and has become a standard
procedure. It is well suited for computations of coupled
channel problems as wdl13].

y=Ae 5. (1.1

For tunneling in a (3-1)-dimensional theory the quantity . . : .
in the exponent is given by thetassical4D Euclidean action While the special technique used here applies only to the

evaluated on a bounce, a finite action Euclidean solution 0?omputat|on of functional determlnants, the g(_eneral ap-
classical equations of motion which asymptotically ap_proach can be u_sed as well for computmg zero point energies
proaches the false vacuum. For thermal activation at nonzedd-4—18 via Euclidean Green functions. Of course functional

temperatureZ the exponent is given b= &/7, where€ is determinants can be computed likewise using Euclidean
the energy of a critical bubblésphalerol, which is a static Green functiong12,17]. Various other techniques for com-

solution “sitting” on a top of a barrier separating two vacua. puting the exact quantum corrections were developed in the
The bounce as well as the sphaleron are unstable solutio@st decade. In Ref$11,18 the heat kernel is computed
with exactly one unstable mode. Bubbles smaller than critiising a discretization of spectra, in RgL9] Minkowskian
cal collapse, and the ones bigger than critical expand aniistead of Euclidean Green functions are used, and in Ref.
lead to the transition to a new phase. These static solutior{®0] the zero point energy is computed via théunction.
and Euclidean solutions are related, namely the sphaleron in The effective action may be computed approximatively by
d+ 1 dimensions can be viewed as a bounce dimensions.  using gradient expansions. There is an ample literature on
The leading order estimate for the transition rate is easy tthis subject. We just quote Ref21-24 for expansions us-
obtain; it just requires solving—in general numerically—aning advanced heat kernel techniques, and 28] for ex-
ordinary, though nonlinear differential equation. Analytic es-pansions based on Feynman graphs.
timates can be obtained in the so-called thin-wall approxima- The leading quantum corrections, being essentially a one
tion. loop effect, can be viewed as a “summary” of the particle
The pre-exponential factad in Eq. (1.1) is calculated creation during the phase transitif26]. The question about
taking into account quadratic fluctuations about the classicahe quantum corrections is a very important one; there are
solution and is given as a ratio of the functional determi-cases where particle creation is so strong that it drastically
modifies the original classical tunneling solutifv—29.
The aim of the present paper is to calculate the pre-factor
*Electronic address: baacke@physik.uni-dortmund.de A for tunneling transitions in the quantum field theory of a
Electronic address: lavrela@rmi.acnet.ge self-interacting scalar field in-81 dimensions.
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U@) next-to-leading order approximation a pre-exponential factor

\_ ml to the decay rate. The rate per volume and time is known to

take the form[5]

2

Se
y:( L] |D| Y2exp{—Se[e]—Scl o]t (2.2

2

to one-loop accuracy. The coefficieBthere is defined as
-0.5

det (—(a/a7)>—A+U"(¢))  det (M)

de(— (a/ar)2—A+U"(0)) de(M©®)’
2.3

Dle]=

The prime in the determinant implies omitting of the four
translation zero modes. With the second equation we have

FIG. 1. Potentialu(®) in dimensionless form Eq3.4). The introduced the fluctuation operator in the background of the
curves are labeled with the value of bounce

-

The rest of this paper is organized as follows: In the next M=—(3lar)>—A+U"(¢) (2.9
section we will describe our strategy for calculation of one
loop effective action. In Sec. Il we formulate our model, @nd its counterpart ) in the unstable vacuum.
specify the form of the potential, write the equation of mo-  The counterterm actio8 is necessary in order to absorb
tion for the bounce and present our numerical results for théhe divergences of the one-loop effective action
classical actior§| ¢]. In Sec. IV we describe the calculation 1
of the fluctuqtlon determinant, E(Q.3)._ There we also _dls- Sﬁfoop[ﬁo]: Zin|Dle]|. 2.5
cuss regularization and renormalization. Our numerical re- 2
sults are presented and discussed in Sec. V. We end with ] .
some general remarks and conclusions in Sec. VI. Formulas [N order to evaluate the one loop effective action we de-
describing the thin-wall approximation and gradient expan£ompose fluctuations around the boungg into O(4)

sion are collected in the Appendixes A and B respectively. Spherical harmonics, calculate the ratio of determinanaf
partial wave fluctuation operators and obtainDinas

>,d,InJy, whered, is theO(4) degeneracy,= (I +1)? (see
e.g.[31]). In calculating InD we exclude the divergent per-
We will consider phase transitions in the quantum fieldturbative contributions of first and second order in the exter-
theory of a self-interacting scalar fieddin 3+ 1 dimensions. nal field of the bouncep,. The regularized values of these
The Euclidean action is given by contributions are then added analytically. All divergences of
InD appear in the standard tadpole and fish diagrams. We

Il. GENERAL STRATEGY

1 will not specify S.; explicitly, we will equivalently omit the
_ 4,0 = 2 ct , n et
el f d X(Z(aw) +U("D))’ (2.9) divergent parts of ID[ ¢] using theMS convention.

where the fielq potentiaU(cp) is assumed to have two non- lll. THE TREE-LEVEL ACTION
degenerate minima=¢_ ando= ¢, >0 (compare Fig. L ) ) ) _
U(¢) will be given explicitly in the next section. For conve- I this section we specify our model, discuss the bounce
nience we have fixed the value ofin the unstablevacuum solution and properties of corresponding classical action. We
asp_=0. parametrize thep* potential with two minima as

Any state built on the local minimura _ is metastable. It 1 1
can tur)nel locally towardg the , phase. .The tunneling rate U(g)= Emz(’oz_ e+ =No? (3.1)
per unit volume per unit timey=I"/VT, is supposed to be 8

dominated by the classical acti®y, of a field configuration, ) ) ) )
the bounce ¢p(x), which looks like a bubble of the @nd choose the same dimensionless variables as in Refs.

¢ -phase within the_ phase. In particular it can be shown [10,32: x*=X#/m for x=0,1,2,3, andp=(m?/27)®. The
[30] that the bounce configuratiop,(x) which minimizes ~classical action then takes the form
the action is spherically symmetric in four-dimensional Eu-

clidean space. In the tree level approximation the decay rate Sei(@)=BSci(@), (3.2
is determined essentially by the tunneling coefficient, -
wexp—Sulep(¥) 1} [39]. where the rescaled classical actign(¢) is

The tree level tunneling rate receives corrections in higher 1
orders of the semiclassical approximation. In quantum field < :f ay| T 2
theory the fluctuations around the bounce contribute in the Sei(¢) d™x Z(Vq)) FU@)], @33
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The parameterr varies from 0 to 1 and controls the - -
strength of self—interaction and the shape of the potential. FIG- 3. (@) Classical actiors, versusa. (b) The ratioS; /S
For a=0 the second minimum disappears, whereas in thdor «=>0.5.
limit «—1 the two minima become degenerésee Fig. 1
The parametep controls the size of the loop corrections. In =tw 2
order semiclassical approximation to be vafidshould not Sel :m (3.8
be too small(see Sec. V for details

The bounce is a nontrivialD(4)-symmetrical stationary s displayed in Fig. &). This ratio tends to unity forx
point of S¢;, Eq.(3.3), obeying the Euler-Lagrange equation 1, as it should. Note that the radius of the bounce in-

creases rapidly in this limit and numerical calculations be-

d’® 3 dd 3 , a . come delicate. So, in the present article we restrict ourselves
ﬁjLﬁﬁ_q)Jrzq) —5®°=0, (3-8 to the intervala e[0,0.95.
and boundary conditions IV. CALCULATION OF THE FLUCTUATION
DETERMINANT
di) =0, ®g ..=d_. (3.7 In this section we discuss a method of computing the ratio
dR R=0 of functional determinant$2.3) which is based on earlier
paperg7,9,10.
Here R=((X°%)2+|X|®)Y2 Equation (3.6) can be easily The explicit form of the operator in the nominai@.3) is
solved numerically, e.g., by the shooting method, as long as )
the value ofa is not too close to unity. We display some M=—As+m+V(r). 4.9
profiles®(R) in Fig. 2 for various values of the parameter

HereA, is the 4-dimensional Laplace operator, and we have

@ introduced the potential as

The classical actioB(¢) as a function ofx is plotted in
Fig. 3(a@). For small« the classical actior goes to a con- , ) 3 )
stant andS,(«=0)=90.857. In the limita—1 the thin- V(r)=U"(¢)=m*=—6n¢(r) +51e*(r)
wall case is realize@see Appendix A and the classical ac- 3
tion diverges as (+ «) 3. The ratio of the classical action — 2 L2 a2 2
computed numerically to the analytic thin-wall expression M| =3P(R) 2 a®X(R)|=mV(R). (4.2

025009-3



J. BAACKE AND G. LAVRELASHVILI

PHYSICAL REVIEW D 69, 025009 (2004

The “free” operator M (9), corresponding to the metastable constant valué,(v,») asr—c. The solutions,lfl(o)(v,r) are

phase where =0 and wheren?=U"(¢=0) takes the same
form as Eq.(4.1), but with V(r)=0.

Due to theO(4) spherical symmetry of the bounce the
operatorsM and M (® can be separated with respect to

given in terms of modified Bessel functions as

_ I+ 1(&r)

O (v,r)=——",

; 4.9

O(4) angular momentum. We introduce the partial wave op-

erators

J’_
r dr r2

+ 2+ m2+V(r),
4.3

with an additional variables that will be used later on. In
terms of these operators we can write

©

d

det M,(0) s

detM{9(0)

2
W

Dlel=[I"

,n

2 —
®iny] =0
whered, is the degeneracy of th®@(4) angular momentum,
d,=(I+1)2. The prime denotes that fd=1 we have to
remove the four translational zero modes.

The ratio of determinants of the radial operators

2 2
Wt

Ji(v)

detM, () { ws

detM{(P(0) "

2 2
w|n(0)+ 14

can be computed using the theorem on functional determi-

nants as described in the next section. Note #fatalways
denotes the eigenvalues i, (0), or more generally the ei-
genvalues ofM, the analogous definition holds farﬁﬂo).

A. Determinants of the radial operators
In order to findJ,(v) (4.5 we make use of a known
theorem[6,33] whose statement is
detMi(v)  (wr)
=lim .
detMO(v) gy O(w,r)

(4.9

Here ¢, (v,r) and lﬁfo)(v,r) are solutions to equations

Mi(#)4,=0, MO (1)yP=0, (4.7
and have the same regular behavior &0. More exactly,
the boundary conditions at=0 must be chosen in such a
way that the right-hand side of E¢4.6) tends to 1 atv

— 00,

It is convenient to factorize the radial mode functions into

the solutiony{®(v,r) for V(r)=0 and a factor & h,(v,r)

which takes into account the modification introduced by the

potential. If V(r) is of finite range the functionﬁx,‘o)(v,r)
and ¢ (v,r) have the same behavior nea+=0 and asr
—o. Nearr =0 they behave as and asr—« they behave
as expl«r) where k=+/v2+m?. Furthermore the require-
ment of an analogous behavior near0 introduces the ini-
tial conditionsh(0)=h'(0)=0. The functiorh(r) then sim-
ply starts from zero at=0 and goes smoothly to a finite

and we have

Iy 1(kr)

(v,r)=[1+h(v,r)] (4.9

Then, by the theoren@.6), the ratio of determinant&4.5)
can be expressed as
Ji(v)=1+h(v,»). (4.10

In terms of theh function the first equatioré.7) reads
d2
—+
dr?

wherel{,,(«r)=dl, 1(«r)/d(«r).
In the following it will be convenient to consider the per-
turbation expansion

||’+1(KI‘) 1
K =
(k) o1

d
a] hi(v,r)=V(r)[1+h(v,r)],
(4.1

©

h(v,r)=> h(w,r)

k=1

(4.12

in powers of the potentiaV/(r). This entails an analogous
expansion for the ratiog)(v) in the sense thaﬂfk)(v)
=h{®(v,»). Thek-order contributiorh(’ obeys an equation
dl « k-1
- (h9,n)=V(O)h{Y(w,n),

d2
fﬁ* ’ dr
(4.13

where we defined(”’=1. Since Eq.(4.13 is a linear dif-
ferential equation it holds also for linear combinations of
h(®. It is convenient to introduce the notatioh{®
=37_h(®. In this notationh, = h{Y). A Green function that
gives the solution to Eq4.13 in the form

[ ry 1
« 1+1(K )+_
lya(kr) 1

()= - | e viont I @i
0
with the correct boundary condition a0 reads
~ la(kT)
Gi(rD) = 1= ey [k K a(hr)
— 1 a(k1)K (k)] (4.15

wherer _=min{r,r}, r-=maxrr}.
The first term on the right-hand side of E@.15 does
not contribute toh{(«). The Green functiori4.15 gives

rise to connected graphs as well as to disconnected ones. The
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latter are canceled in (a+h,()) whose expansion in Each of the three terms on the right-hand qigels) is now
k-order connected graph&Y), (v) reads manifestly of orde®/®. The subtraction done in the square
bracket is exact enough when the logarithm is calculated
Z(—1)krt “ with double precision. We have determinbgdr) as solu-
I”JI(V):ln(l“LhI(V’“)):gl Tk Jicon(?)- tions of Eq.(4.1) andh{®(r), h®@(r) andh®)(r) as those
(416 Of Eq. (4.13 using the Runge-Kutta-Nystmo integration
method[34]. Of course we cannot integrate the differential
This formula is analogous to the expansion of the full func-equations untir =. In fact we have integrated it up to the
tional determinant in terms of Feynman diagrams maximal value for which we know the profilés(r), and
thereforeV(r). This value is such, that the classical field has
well reached its vacuum expectation value, and therefore
V(r) has become zero. This is the condition under which we
can impose the asymptotic boundary condition for the clas-
whereA® is the one-loop Feynman graph of ordein the  sical profile. For such values the functiohf)(r) have al-
external potential/(r). ready become constant; indeed fé¢r)=0 they have the

Indeed, it is obvious from Eq4.14 thath® and, there-  exact forma+bK, . 1(xr)/1,,(xr) and the second part de-
fore, Jf'?on are of the ordelvV¥. Since the expansion of I8 creases exponentially foe>1/«. In praxi we used values of
in powers ofV is unique, we conclude that R up to Ry5=Mriy=20—30.

Up to now we have neglected the existence of the nega-
tive modew3<0 for =0 and four zero modes?=0 with
I=1. The former results in a negative value &f(v)=1
+hg(v,°) at v=0. According to Eq.(2.2) one has to re-
place w3 by |w3|. This implies taking the absolute value of
Jo(0) in Eq.(4.19; indeedJy(0) is found to be negative.

Making use of a uniform asymptotic expansion of the  The translational zero modes manifest themselves by the
modified Bessel functions in Eq4.15 one can check that yanishing of w?,=0, the lowest radial excitation in the
Ion~11%K"1 asl—. This results in the expected qua- =1 channel with degeneracy+ 1)2=4, and thereby by the
dratic and logarithmic ultraviolet divergences inIlndue to  vanishing ofJ;(v) at v=0; see Eq(4.5). This represents a
the contribution of){%,, andJ{@, . Our strategy is to com- good check for both the classical solution and the integration
puteanalyticallythe first two terms in the sum EG1.17) and  of the partial waves. The factef has to be removed accord-
to addnumericallycomputed Ir0®), which is the sum with- ing to the definition of dét So in thel =1 contribution we
out first and second order diagramas") and A®). It reads have to replacd;(0) by
explicitly

* (_1)k+l
In D= kgl TA(k>. (4.17)

AR=> (1+1)20, . (4.18
=0

B. Calculation of D®

J(v) dd(v) d

_ _ m— == ——hy(r)| . (422

IND®= (1+1)2(InJy(v)®), (4.19 v—0 ¥ dv® d(¥9) v=0
1=0

oo

Notice that replacement E¢4.22 introduces a dimension
where into the functional determinant. Thereby the units usedvfor
e become the units of the transition rate. Here we have used
)= NG
(In3,(»))™=In(1+hy ()~ hi™(=) the scalem throughout; see Eq$5.1) and (5.2).
1 Our next step is performing summation ovein Eg.
- h,‘z)(oc)—z(hfl)(oo))2 . (420  (4.19. For small bounces«=0.8) we have found good
agreement with the expected behavior, namely

Here the terms in square brackets correspond to the fish dia-

gramJ(®) . Since all contributions to I®® are ultraviolet (nJ (V))@o( 1 .23

finite, we need no regularization in computing them. The ! (|+1)5' ’
divergent contributions of the first and second ordev inill

be considered in Sec. IV C. So, the summation has been done by cutting the sum at some

In order to avoid a numerical subtraction that might bevalue |,,,, and adding the rest sum froi,,,+1 to < of
delicate we re-write the terri@.20 to be summed up on the terms fitted with
right-hand sidg4.19 in the form

€l a b C
|nJ| ~ 5+ 6+ 7"
(I+1)°> (+1D)° (1+1)

_ 1 — 4.2
(InJ,(v))®= |n<1+h|<oo>>—h|<oo>+Ehmoo)2 +h{® () 424

The summation was stopped when increasing the value of

1 — o - .
——hD(0) (hy() + h{D(=0)). (4.21) I max Dy unity did not change the result within some given
2 accuracys. The required accuracy was decreased for higher
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a. The problem is that the convergence becomes worse a&e obtain
we get closer toa=1. This is related to the fact that the

asymptotic behavior(4.23 sets in only whenl>mrg, 2 w?

wherer . is the characteristic size of the bounce. It is of A(2)=16772 Z_VEHHMTHHEU d*x(V(x))?
order 1m at small values ofe and can be estimated as

1/(1— a)m near the thin-wall limit,a— 1. As the maximal 1 -

value of the angular momentum we have uset=25, our + 1287741 q’dq|V(a)|?

computations cease to be reliable beyone-0.95. The
value of § was about 10° for small bounces, and of order of
103 for &>0.85. As we will see below, for larger values of
a the effective action is well approximated by the leading
terms of a gradient expansion.

B Vo2 +4m? n V@2 +4m?+q
q Vg2 +4m?—q

Again theMS scheme corresponds to omitting the first term
on the right-hand side and for the finite partA#) we find

x| 2 . (4.3)

C. Perturbative contribution and renormalization

We have described in the previous subsection the compu- 2) 1 o e )
tation of the finite part I ®) which is the sum of all one- Afin:128m_4fo Q*dQIV(Q)|
loop diagrams of the third order and higher,
o VQ?+4+Q
= (=Kt X[ 2—JQ%+4 In"——rn—11, (4.32
nPE=2 e A .29 R a-Q

. . . ... with Q=q/m being the dimensionless momenta. For the nu-
We now have to discuss the leading divergent contributions i evaluation oA we have to compute the Fourier

(1) (2) i . S .
A rr:mdUA' : ;’_hese are Icomplut(_ad as ord|r;1ary Feynman, ansform of the external potential which is known numeri-
graphs. Using dimensional regularization we have cally, the remaining computation is straightforward.

4—¢€ N7
A(l):f (47 V) (4.26 V. NUMERICAL RESULTS
(2m)4 € K>+ m? ,
To summarize, we represented the false vacuum decay
where we have introduced the Fourier transform of the pof@t€ per unit time and per unit volume as
tential

2
=m* y) e—3c|[¢]—sif|foop[¢]1 (5.2
~ . v
V(k):f d*xV(x)e ', 4.2
where
We obtain 1
2[5 ) Sl19flfoop|:(P:| = 2 |I’]| mSD[(P“ = S(1eflt)op,p+ Siflgop,n.p.!
m
A= — L yetndmtin 41 f d*xV(x), (5.2
16m2| € m? ) )
(4.29  With perturbative
where u is the usual dimensional regularization parameter. S<1eflf :}( g_l)_ EAE_Z)) (5.3
We choose it to be equal to. Then using thé1S scheme we oopp | T 2N
just retain the last contribution in the bracKeee e.g[35], )
p. 377. Thus, the finite part oA is and nonperturbative
1 * (_1)k+l o
1(~ e ff —_ (K) — _ (3)
AfR=-3 fo R3JRV(R). (4.29 Stioop.np~ 23 . AY=SInD® (54
The second order terms takes the form contributions. ,
It is useful to introduce the quantii,
4—€
A®— f M BV G(@.B) =St oo €)/Scl ¢b), (5.5
(27’.)475

which indicates how big the quantum corrections are. Since
J’ d* <k 1 the classical action, E@3.2), depends linearly on the param-
A—¢ 2 2 2 24" eterﬁ we haVEG(a,ﬂ):G(Q,l)/B
(2m) (k™ mIL(k+q)™+m] The numerical calculation shows thHat «,1) varies from
(4.30 0.0367 to 0.0448 as we varyfrom 0 to 0.95, with a shallow
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— — T T T ' T — T 005 TABLE |I. Numerical results for classical action and one loop
effective action.

ff ff ff ~
a St St S,

-loop,p -loop,n.p. -loop

0.00 3.25%10° 8.216x10°2 3.335<1(° 9.086x 10"
0.02 3.33%10° 8.498<10°2 3.422x10° 9.355x 10"
0.05 3.47%10° 8.422<x10°2 3.562x10° 9.787x 10"
0.10 3.75x10° 6.737x10°2  3.819x10° 1.059x 1(?
0.15 4.08x10° 2.654x10°2 4.115<10° 1.153x1C?
0.20 450&10° -—4.501x102 4.459%<10° 1.263x10°
0.25 5.02x10° -—-1564<10"' 4.865<10° 1.394x 1(?

. . . . . . . . . . 0.30 5.67x10° -3.201x10 % 5.351x10° 1.552x 107
0 0L 02 030 e 06 07 0809 0.35 6.49%10° —5539%x10°1 5.946x10° 1.744X 10
0.40 7.57x10° -8.836x10° % 6.687x10° 1.983x 107
0.45 8.98410° —1.348<10° 7.637x10° 2.286x1C?
0.50 1.08x10" —2.006x10° 8.889x1(° 2.681x1(?
0.55 1.356¢10" —2.958<10° 1.060<10" 3.211x1C?
0.60 1.74x10" —4.371x10° 1.303x10" 3.951x 1(?

FIG. 4. The ratioG (e, 8) =S50,/ Sei for B=1.

minimum G,,;,~0.033 ate about 0.6(see Fig. 4. Figure 4
suggests thatG(1,1)~0.05, which means that for suffi-
ciently big values of3, namelyB>0.1, the quantum correc-
tions to the classical action are smdéiss then 50%for all 065 2326¢10° -6.560<10° 167010 503310’
values ofe. 0.70 3.27kx10" -1.015x10" 2.261x10' 6.720x 107
The corrections to theansition rateare given directly by ~ 0-75 4.966&10°  —1.659<10"  3.306<10" 9.589x10”
a factor expeiﬂgop), so even if the classical transition rate 080 83810'  —2.960<10°  5413<10° 1512¢1C°
is sizable, as it happens for small the quantum corrections 083 1241 -4512¢10' 7.887x10' 2.136x1C°
suppress the decay of the false vacuum by factors exr9-85 1.686<10°  —6.233<10"  1.062<10° 2.809<1C°
(—3.3) ata=0 and exp{-291) ata=.9. 0.87 2.40%10? —9.038<10' 1.506x10°* 3.874x10°

Note that the main contribution to the effective action for 0-88 2.951C°  —1.114x1(°  1.836x<10° 4.655<10°
all « is coming from theA{!) (cf. Tables | and Ii. For small ~ 0-89 3.68410°  —1.401x10° 2.283<10° 5.699<10°

fin
« the perturbative contribution is almost 100% of the total 090 4.71X10°  —1.803<1(°  2.907x1C° 7.140<10°
One_|00p effective actio(see F|g 5 0.91 6.19% 102 —2.390x 102 3.809%x 102 9.198x 103

In the limit @— 1 the leading terms of the gradient expan- 0.92 8.455%10°  —3.284<10° 5171xX10° 1.227x10"
sion(Appendix B give the dominant contribution to the one- 0.93  1.20K10° —4.724x10°  7.347<10° 1.711x10
loop effective action. Already forr=0.8 the sum of leading 0.94 1.82%10° —7.209<1¢* 1.109<10° 2.531x10
gradient terms 0.95 3.00&%10° —1.188<10° 1.820<10° 4.061x10*

Seffdmzzseffdo“l‘seffdz (56)
arac gracs ores wherea® is the following integral

approximates the one-loop effective acti f,foop within

20%. So the gradient expansion reproduces well the behavior a(2):£me3d R(V(R))?, (5.9
of the one-loop effective action when— 1; see Fig. 5. As 8Jo
the numerical procedure described in the main part of this

paper becomes precarious for 0.9 this expansion comple- evaluated at the bounce solution. Numerical values for
- l 2 . .
ments the computation of the transition rate in this region. Afid Al anda® for different values of are collected in

As it is well known there is exactly one negative mode in Table Il. With the present choice pf the perturbative terms
the spectrum of fluctuations about the bounce. Its energy iEPresent the most important contributions to the effective
plotted vsa in Fig. 6. action(see abovk this means at the same time that a modi-

In the present paper we used dimensional regularizatiofication of the regularization and renormalization procedures
and we have chosen the paramesér which can be under- C€an result in large changes in the one-loop effective action.
stood as parametrizing a sequence of possible renormaliza-
tion conditions, to be equal tm?. Choosingu? differently VI. DISCUSSION AND CONCLUSION

- i i (1) (2) . .
would result in the following corrections t#;;; and Ai;; In the present paper we applied a previously developed

technique for evaluations of functional determinants and cal-

2 . . L. .
A 14m™ ] A culated quantum corrections to the tunneling transitions in a
fin m2/ T’ model of a self-interacting scalar field int3L dimensions.
In the present toy model the decay rate is vanishingly
2 small. The sign of quantum corrections is such that it de-
AR, AgiZnga(z)m“_Z, (5.7)  creases the false vacuum decay rate. The corrections can be

m thought as originating from particle creation during the phase
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TABLE II. Numerical results for the first and second order con-
tribution coefficients.
a AfR AR a® ]
0.00 5.17& 10° —2.654x 10° 1.036x 10
0.02 5.37% 10° —2.591x 10° 1.055x< 10
0.05 5.706¢< 10° —2.499< 10° 1.085x< 10 7
0.10 6.325¢10° —2.358<10° 1.144< 10
0.15 7.060¢ 10° —2.235x 10° 1.215¢10
0.20 7.94%10° —2.133x 10° 1.300< 10" i
0.25 9.01% 10° —2.059x 10° 1.405< 10
0.30 1.03x 10 —2.020¢ 10° 1.536x 10
0.35 119 101 —2.024% 1d) 1.702x 101 0 I 0.1 I 0.2 I 0.3 I 04 I 0.5 I 0.6 I 0.7 I 0.8 I 0.9 I 1
0.40 1.41x 10" —2.085¢ 10° 1.916x10 o
0.45 1.686¢10" -2.21910 2.199<10" FIG. 6. The negative mode energy as a functiorxof
0.50 2.056¢ 10" —2.453<10° 2.585x< 10
0.55 2.570< 10" —2.825¢10° 3.127x 10 transition. The created particles take energy from the tunnel-
0.60 3.31K 10 —3.399x 10° 3.921x 10 ing field and therefore decrease the tunneling probability.
0.65 4.43% 10" —4.286x 10° 5.147< 10t Analytical estimations show that particle creation is typically
0.70 6.26% 10 —5.701x 10° 7.175x 10 weak in the thin-wall approximatiof26]. In the present pa-
0.75 9.526¢ 10 —8.109x 10° 1.085x 107 per it was found that the quantum corrections are even
0.80 1.61% 1CR —1.269< 10t 1.848x 107 smaller away from the thin-wall casecompare Fig. 4
0.83 2.39K 107 —1.778<10 2.761x 102 which assumes that particle creation @ 0.1 is weak for
0.85 3.256¢ 102 —2.321x 10" 3.790¢ 1% all values of the coupling constant On the other hand for
0.87 4.660¢ 107 —3.170¢ 10t 5.479x 102 B<0.1 the quantum corrections dominate, which means that
0.88 571K 102 —3.788< 10" 6.753% 10 in this regime one should look for a bounce solution taking
0.89 713K 1P — 4,609 10" 8.493x 10 into account the full effective action in the one-loop approxi-
0.90 9.13& 10 ~5.735¢ 10" 1.094x 10° mation[27-29. o
0.91 1 20% 10° _7333¢ 10" 1 453¢ 10° ' Correctlons_ to the false vacuum deqay ina S|m|Ia_r model
0.92 1 64% 10° —9.699¢ 10" 1.999¢ 10° in the (_3+ 1)-dimensional theory |m_he thin wgll approxima-
093 2 34K 10° 1341 1P 2 883¢ 10° tion vv_|th the heat_ k_ernel expansion technique were calcu-
0.94 3 B6K 10° _1.963¢ 107 4417 10° lated in [36], but it is not stralghtforwarq to compare our
0.95 5 86K LGP 3118¢ 1 7 350¢ 1P r(—?sults since we use a.dn‘ferent renormal]zatlon scheme and a
: ' ) : different parametrization of the potential. Powerful tech-
niques for analytic calculations of the prefactor using differ-
ent approximations were developed [i24,37,38, but we
cannot compare our results directly, since these calculations
35 : : : are within 3D theory.
e The technique described here can be applied to tunneling
30 _ transitions in more realistic theories in 4 dimensions.
g
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0 0 01 02 03 04 05 06 07 08 09 1 APPENDIX A: THE THIN-WALL APPROXIMATION

In the limit «— 1 the so called thin-wall case is realized.

FIG. 5. Our results for the effective acti@f'l,,, (squaresto-
gether with the perturbative pﬁ_ﬂgopyp(dotted ling and the lead-
ing parts of the gradient expansioBfi; o, (dashed line,a
=0.45-0.95). All quantities shown are multiplied by the factor
(1-a)s.

This is the case when the difference in energy density be-
tween the two vacua
e=U(P_)-U(D,), (A1)
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is small compared to the height of the barrier. In this case the U"(p(x))=m?+V(x), U"(0)=m?. (B2)
potential Eq.(3.4) can be represented as
For the bounce the potential only dependsrenx| but we
U(®)=Uo(P)+OC(e), (A2) " will not use this now. The logarithm can be expanded with

where in our case the symmetric palg is given by respect to the potential(x). We write

1 (D)= In| 24tV
Ug(®) =g P2~ D)%, (A3) - “A
and where =In[(—As+m?) 1A+ m?+V(x))]
e=2(1-a). (A4) 9

_ _ _ 2\ —1
In the thin-wall approximation the radiuR of the bounce =IN[1+(=A,+m9) V(X))

and the Euclidean actio8;, are given analytically4,6] as

*° (_1)N+1
= - T(— 2y—1 N
_ 35, ., 27n°S! =3 [ A m?) TVeo Y,
R: Ty SC| = 263 1 (A5)
and the effective action is given by
where
* (_1)N+l
= S t[(—A+mD) V()N (B
S]_:ZJ’ dRUO((Dk), (AG) N=1 2N

. . . . ) . We introduce the Fourier transform
is the action of the one-dimensional kink solution corre-

sponding to degenerate potentid} with the equal minima. ~ ‘
For our choice of the potential, EGA3), the kink solutions V(Q)=f e V(X)) d*x. (BS)
is
The individual terms in the expansion of the effective action
_ 2 (A7) have the form of Feynman diagrams with external sources
K 14 eRR’ V(q;) with j=1...k. The momentum that has flown into the
linelis
One finds thatS;=2/3, and correspondingly |
— 1 w? Q=2 q;, (B6)
R=——, Sj=——. (A8) =1
l-a 3(1—a)®
of course the total momentum must be zero, i@\,=0.
APPENDIX B: THE LEADING TERMS With these notations we can write thih term in the effec-
OF THE GRADIENT EXPANSION tive aCtion, Omlttlng the faCtor‘( 1)N+1/2N as
We want to derive an approximation to the effective ac- d*p N d*q; - 1
tion of a scalar field on the background of a bounce solution. Ay= f 7 f —J4V(qj) [T —
The strategy is to expand first the effective action with re- (2m)%i=1 (2m) =1l(p+Q)+m

spect to external vertices, and to expand in a second step the X(2m)*8(Qy)- (B7)
resulting Feynman amplitudes with respect to the external N

momenta. This approach is fairly standard, and has beefhe four-momentum delta function arises from taking the
used, e.g., in Ref25]. We note that we will retain all powers tr5ce. We obtain a gradient expansion by expanding the de-

in the external vertices; such a summation was found to yielgh s minators b+ Q,)2+m? with respect to the moment, .
a very good approximation for the sphaleron determinant,q leading term is of course

[11,17]; see Fig. 1 in the second entry of REE2]. We have

to compute the trace log or log det of a generalized Euclid- d*p AR d“q
ean Klein-Gordon operatoA,+U"(¢) where A, is the An Ozf —— 11 “ —'V(qj)]
four-dimensional Laplace operator. Formally ' (2m)* [ p?+m?| j=1 (2m)*
—As+U"(9) X(27T)45(QN)
[InD]=In| ———|. (B1)
—-A4+U"(0) d4p L
. . . =f i fd“X[V(X)]N- (B8)
We introduce a potential(x) via (2m)%| p*+m-]
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The zero-gradient contribution to the effective action is ob-Using MS subtraction we get
tained by resuming this series; one finds

p?+U"(¢)| 1 R E[2mZV(r)+v2(r)]
grado_ fd4 f 7 [ > ]E—f d*xK®). 3272 | 2
2 (277) p>+U"(0)) 2 (89 , ,
B9 m<+V(r m
—(m2+V(r))2In—2()+m4In—2}.
Of course this integral has to be regularized, e.g., via dimen- M e
sional regularization. The divergences arise from the terms (B10)
with N=1 andN=2, which are standard divergent one-loop
integrals. Integrating over 4D Euclidean space we finally obtain
We find
1= o LT V(R)
<© 27TD/2J dppP~t [p2+U”(¢) Sgradozszf R°dR| (1+V(R)) In—2
= ©
F(D> (2m)P | p?+U"(0)
3 ~
2 —E(ZV(R)+V2(R))+ In u? (B11)
2 "
- 2 {30 p2+U" () .
D D 21 U0 with = u/m.
F(E) (4)PP P ©) p=0 Let us now consider the one- and two-gradient contribu-
tions. We expand the denominators up to second order in the
Zf 01 1 1 gradients, i.e., in the momen@, . We obtain
D p>+U"(¢) p?+U"(0) ﬁ 1
The first term in the parenthesis vanishes ferD<2 and is = (p+Q))?+m?
defined to vanish in general by analytic continuation. The N
second term can be rewritten as _ 1 2
(p2+m2)N (p2+m2)N+ =
{[U// ¢)]D/2 [U/r(o)]D/Z}f dX 2 N
DI| = | (4m)P" 1 —— >
2 (p2+m2)N+ =1 J
- N
-2 I'(b/2+1)I'(-D/2)
- [P 21 (1) +W Z 22, 4P Q(P-QW
DF(E)(MT)D’Z P !
" D2 1\ 1D/2 + B % 4(p-Q)*+0(Q%. (B12
X{[U"(#)]PP=[U"(0)]°% iz & AP Q -

r(-b Y D2y D/ Under O(4)-symmetric integration @,p,= p25M,,, andp,
- (4 )D12 {[U (4)]°2=[U"(0)]7"3. =0. So the one-gradient term vanishes and the complete
two-gradient contribution becomes

Now we setD=4— € and use

1
H R —
F(_E): 1 F<§) " (p2+m2)N+2

—(p2+m2); Q?

2] (—2+el2)(—1+€l2)
=51-"%t5 ! :
2| € 2
to obtain =~ 2 .O,—m?2 2
(p2+m2)N+2 P k2>1 Q; Qu 2 QJ}
-1[2 3 (B13)
KA~ o= [——yE+In4w+ |(m2+V(r))2
327° We now have to rewrite this in terms of the momeqjahat

5 5 represent the gradients on the functidf(g];). After having
e m+V(r) J
1= =in——2 ] —m* 1= =In— used the fact thall, appears under the integral owdftp we
2 w? 27 2 will now use the fact that it appears under the product of
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mtegralsfd"'q,V(qJ) which implies permutation symmetry
in the indiceg. So if we expand the produc;- Qy andQ]
we will encounter just two kinds of terms: produds q,
with [#m and squaresq,z, which may be replaced by

d;-9, and byqf, respectively. We have to do some combi-

natorics in order to find

(N—1)N(N+1) N(N+1)
S o= g M
(B14)

(N—1)N(N+1)(3N—2)
EA Qj- Q= >4 g:- 92
k>j

L (NZDNN+D)

5 os. (B15)

Now we may use momentum conservation to rewrite

gs=—0q;-(Qo+---+aqn)=—(N—1)q;-q, (B16)

so that
(N—=1)N(N+1)
; Qf=———% % (B17)
(N—2)(N—1)N(N+1)
Z» Q) Qu=~— g:- 0>
k>j 24
(B18)
and
Mo e 1 (N=1)N(N+1)
N2 (pZm2)N+2 24 01- 2
X[—(N=2)p?+4m?]. (B19)
The momentum integrals are
J d4p p2 = L 2—2N 2
2m® (pPPrmd)N 2 1672 (N-DN(N+1)
(B20)
f d4p m2 = L 2—2N 1
(2m)* (p?+ m2)N+2_ 1671-2m N(N+1)
(B21)

and, therefore,

d*p 1 N
f WHNz:QrQZl&TZmZ_ZNl—Z- (B22)

PHYSICAL REVIEW D 69, 025009 (2004

A ! f d* o
=— X
N2 16m2

V(x)
2

5 (VV(x))?.
(B23)

m 12m

The termA; , is zero. The sum over all terms yields

1 1
Sgrad2= 32772J d4xm2+V(x) 1—2(VV(X))2, (B24)

or finally in dimensionless variables

S

1
grad,2= 1ng RSdRW(R)(V (R))%.  (B25

An alternative derivation starts with a technical step that

frees us from the denominato\L/ We take the derivative of
the effective action with respect t?, a step that we can

revert later on. We then obtain, using the cyclic property of

the trace,

_ds"
dn?

*° _ N
=2 ( ) tr{[ (= A4+ m?) VOO IN( = A+ m?) Y

Z (B26)

NII—‘

We note that we have included thie=0 term, which can be

removed later on if necessary. So we have arrived at the trace
of the exact Green function in the external field. The terms

By have the form

dp N d“q; 1
—(—_1\N J
Pty J (277)41[[1“ (2m)*|p?+m?
<V . W v
(ql)(p+Q1)2+m2 (qz}(p+Q2)2+m2 (93) ...
- 1 ,
V() o e (2 Q. (B27)

Assume we have expanded the fractiof(fA Q)2+ m?]
to first order in - Q+ Qﬁ, yielding a factor

1
m[—zlo'Qk_QE]szr (B29)

at thek™ place in the product of propagators and vertices, in

The momenta are converted into gradients; so we finally obother words we have obtained an insertion 6Rp-Qy

tain as the expansion terms of the two-gradient part of the- QZ.

effective action

Consider the part of the product to the right of this
insertion. We rewrite it as
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4
| am
(2m)*

ATl

=kl

N

I

j=K+1

1
—2p.-0,— 02 ]———
[—2p-Q Qk]p2+m2

f d4XJV(XJ)—

p2+m2

X (2m)*8(Qu+ Qg1+ -+ -+ ).

(B29)
We furthermore rewrite the delta function as

(2m)*8(Qu+ Gy 1+ - - )

= f d*xe Qe t - Fan)-x (B30)

Inserting this in Eq(B29) we can carry out the integrations

over theq; and thex; to obtain

N
V(X .
p2+m2j—k+1[ ( )p2+m2

) 1
f d*x€% X -2p- Q- Qfl——— II

PHYSICAL REVIEW D 69, 025009 (2004

Obviously part—i2p-d vanishes upon symmetric integra-
tion overp. It can also be written as a boundary term for the
x integration. If we want to obtain the second order gradient
term we have to take into account tQ¥ term of the first
order expansion, i.e.

f d* ! 52 ! (B35)
X L
p2+m?+V(x) p?+m?+V(x)

the terms—2ip - g arising if two denominators are expanded
to first order, yielding

(—2ip-9)

[ A
p2+m?+V(x) p2+m?+V(x)

X(—2ip-d) (B36)

pZ+m2+V(X)

Here is included the term arising from expandme propa-

(831)  gator tosecond orderindeed this yields
Now the Qy ,, in 2p-Q,+Qf can be written as-id/dx,= 1 . 1 .1
—id, on the exponential. Integrating by parts they can be & 5[~ 2P Qx= Qid 5 ——[—-2p- Q= Qil 5 —,
. . ) L +m pc+m ps+m
written asid, acting on the product to their right. So the (B37)

whole string to the right of the insertion can be written as

X
) p2+ m2
(B32)

N
jd“xe‘Qk'x[—Zip-ﬁJr&Z] P 11 {
p2+m?j=k+1

We now consider the sum oveéd; we split N=k+1 and
(—=1)N=(—1)%(—1)". The sum ovel is independent ok
and runs from 0 toe and, putting in the factor€1)' we
obtain

J’ d*x€Q [ —2ip- 9+ d?]
p2+m2

V( )—1
—V(x
p2+ m2

=f d*xe QX —2ip- 9+ d%] (B33
P

2+ m?+V(x)

Note that the sum starts with=0, which corresponds to the

a term that is needed for obtaining the complete propagator
1/(p?+ m?+V(x)) between the two insertions. We now have
the two-gradient term

4
(Z)ZEJ aP [ oy at
2) (2m)* p2+m2+V(x) p2+m?+V(X)
e (—2ip)
p2+m2+V(x)( P )p2+m2+V(x)
X(=2ip-d)————F1. B38
(—2p )p2+m2+V(x) (B38)

The first term can be written, after one integration by parts,
as

1 d*p . _ )
2J (2m)* X(p2+m2+V(x))4[‘9V(X)] . (B39

In the second term we remark that the derivatives in the first

casek=N; in this case the product overeduces to 1. Now

we do the analogous operations on the part to the left of thé1Sertion act on the complete part to the right of it. Therefore
insertion, using in the exponef,=d,+ - - - +q,; we now  an integration by parts lets it act onto the part to the left of it.
can carry out the summation over k and we finally find for USINg Symmetric integration over the second part yields
the case that we have taken into accountftist order ex-

ansionof one of the denominator 2+ m? 1 d* 2
p P Q) _f P p NVOOTR. (840
2} (2m?* (P> +m*+V(x))°
f d*%%————— [~ 2ip- 9+ P]— . , , _
p2+m?+V(X) p2+m?+V(x) Now we integrate with respect tm? to obtain the two-
(B34) gradient contribution to the one-loop effective action
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grad2 2,[

1 p
4 (p?+m?+V(x)?

d4p
(2m)*

1 1
3m%m%vuw

2

[aV(x)]?

B 1
32

1 1
4 2
zf d Xm2+V(x) LV (B41)

which coincides with the previous result EH@R24).

PHYSICAL REVIEW D 69, 025009 (2004

The terms of the gradient expansion can be evaluated in a
straightforward way. We note, however, that the temh
+V(x) vanishes, depending on the valueagfat one or two
points, and that therefore the expressions are ill-defmed
priori. This is a reflection of the fact that the effective action
has an imaginary part, due to the negative mode. An expan-
sion of the effective action has to reflect this feature. With an
m?— i e prescription this becomes apparent. When computing
these terms we have used the principal value prescription for
Se radzand taken the absolute value in the logarithm appear-

g
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